
UnseenCode: Invisible On-screen Barcode with
Image-based Extraction

Hao Cui, Huanyu Bian, Weiming Zhang, Nenghai Yu
CAS Key Laboratory of Electromagnetic Space Information

University of Science and Technology of China
Hefei, China

{cvhc,hybian}@mail.ustc.edu.cn, {zhangwm,ynh}@ustc.edu.cn

Abstract—Screen-camera communication techniques achieve
one-way communication with widely-used screen and camera
devices. Popular barcode methods use visible spatial patterns to
represent data, which has been considered obtrusive to human
observers. Recent works borrow ideas from visual light communi-
cation (VLC), and use inter-frame pixel change to modulate data.
To recover pixel change, the receiver has to record and process
video frames. Such video-based extraction has high hardware re-
quirements and lacks reliability. Inspired by VLC-based methods,
we propose UnseenCode, an invisible on-screen barcode scheme.
It leverages inter-frame embedment from VLC-based methods
to embed invisible barcodes into arbitrary on-screen contents.
Unlike VLC-based methods, UnseenCode does not require video-
based extraction. We propose an image-based extraction method
based on cross-component correlation of color images. Any off-
the-shelf smartphones with camera capability can be used to read
UnseenCode by capturing on-screen contents. We propose the
full implementation of UnseenCode for evaluation. Experimental
results show that UnseenCode decoding algorithm is reliable and
applicable under various screen and camera settings. UnseenCode
provides up to 2.5 kbit capacity with less than 5% error rate.

I. INTRODUCTION

Screen-camera communication is a popular technology in
the field of human-computer interaction (HCI). It utilizes
commonly available screen and camera devices to achieve one-
way device-to-device communication assisted by human. In a
typical application scenario, the user uses a smartphone to read
the message embedded on the screen. Here, screen devices
(such as computer monitors) serve as transmitters, and camera
devices (such as smartphone cameras) serve as receivers.
Barcode methods like QRCode [1] have been long used for
screen-camera communication. Barcodes use visible spatial
patterns to represent data (Fig. 1a). Traditional barcodes are
considered obtrusive to human observers, because they occupy
part of the screen to show human-unreadable contents. Some
works of beautified barcodes, such as PiCode [2] and [3],
embed barcodes into images without losing human readability
of images. However, beautified barcodes are still visible and
degrade the visual experience of images. It is desired to
design invisible barcode to minimize obtrusiveness to human
observers.

Recently, several works gain inspiration from visible light
communication (VLC). They embed data into temporal di-
mensions of on-screen contents as high-frequency or low-
amplitude inter-frame pixel change (Fig. 1b), which appears as

(a) Barcode methods (b) VLC-based methods

Fig. 1: Illustration of two main types of screen-camera com-
munication techniques

flicker to human eyes. Due to the limited sensitivity of human
vision to flicker, the pixel change is completely invisible.
Specifically, HiLight [4], InFrame++ [5] and TextureCode
[6] modulate data with high-frequency luminance change.
VRCodes [7], Uber-in-Light [8] and [9] embed data into
chromatic components, because human vision is less sensitive
to chromatic flicker.

Although VLC-based methods are sometimes informally
named as invisible barcodes, they are fundamentally different
from barcode methods in the sense of data embedment and ex-
traction. Barcode methods embed data into spatial dimensions
only, while VLC-based methods also make use of temporal
dimensions. To borrow the terminology of video coding, we
call these two schemes as intra-frame embedment and inter-
frame embedment, respectively. Correspondingly, they require
different extraction methods. A barcode can be captured by
taking a single image (image-based extraction). In VLC based
methods, inter-frame pixel change cannot be recovered from
just one image, and the receiver has to record successive
frames to extract inter-frame pixel change (video-based ex-
traction).

Inter-frame embedment not only achieves invisibility but
also expands the data capacity of screen-camera commu-
nication in the temporal dimension. Seemingly, VLC-based
methods are strong competitors of barcodes. However, on
the receiver side, we find that corresponding video-based
extraction lacks applicability and reliability. Specifically, we
point out three significant drawbacks of VLC-based methods:
• (a) High hardware requirements. To capture inter-frame



pixel change, the receiver must be capable of recording
video at Nyquist rate of display framerate, such as 240
FPS (frame per second) for HiLight and TextureCode.
We investigate recent smartphone models and conclude
that high-speed video recording is not supported by most
of off-the-shelf smartphones (Tab. I) due to the limited
performance of video encoding and file writing.

• (b) Low decoding reliability. Videos taken by handheld
smartphones always suffer from shake, frame drop and
other distortions, which are difficult to correct and can
greatly impact on extraction accuracy. In contrast, images
captured in well-lit conditions are generally not affected
by shake because of the very short exposure time. A
barcode scanner can even take advantage of the temporal
redundancy of barcode images to improve extraction re-
liability. Barcode scanners apply a trial-and-error process
to find decodable patterns among many captured images.

• (c) High time complexity. Video processing is generally
more computationally expensive than image processing,
which can be very challenging on mobile devices. In
contrast, image-based extraction of barcodes has been
proved to be very efficient on smartphones.

TABLE I: Camera hardware capability of recent entry- to mid-
level smartphones (2013-2017)

Model Minimum
Exposure Time

Camera
Resolution

Maximum Video
Recording FPS∗

Huawei Mate 9 1/4000s 20 Mp 60 FPS
Nokia 7 1/500s 16 Mp 30 FPS

Xiaomi Mi 3 1/1000s 13 Mp 30 FPS
vivo X3L 1/1000s 13 Mp 30 FPS

∗ Burst shooting mode is not considered.

These limitations motivate us to rethink the design of truly
invisible barcode. We expect that this kind of barcode is
completely invisible to human, as in VLC-based methods.
It should still support reliable image-based extraction and be
applicable with most off-the-shelf screens and smartphones, as
in traditional barcode methods. As for capacity, it should be
comparable to existing barcode methods. In this paper, we pro-
pose UnseenCode, a novel invisible on-screen barcode scheme
used in screen-camera communication. On the embedder side,
UnseenCode uses inter-frame embedment method from VLC-
based methods to hide barcode image in arbitrary on-screen
contents. On the extractor side, we analyze the process of
camera exposure and propose a reliable and effective barcode
extraction method based on cross-component correlation of
color images. We show that UnseenCode works with different
hardware settings. Compared to VLC-based method, Unseen-
Code provides better reliability and applicability. In Tab. II,
we compare UnseenCode with existing methods.

This paper is organized as follows. Section II introduces
basic knowledge about flicker perception of human vision,
which is the theoretical basis to achieve invisibility with
inter-frame embedment. In Section III, we outline the core
techniques used in UnseenCode. In Section IV, we present

the design details of UnseenCode system. In Section V, we
show various evaluation results to prove the performance of
UnseenCode. Finally, we introduce some related works and
conclude our work in the last two sections.

II. BACKGROUND

VLC-based screen-camera communication leverages the
limitation of the temporal sensitivity of human vision to
achieve invisible embedment. In this section, we briefly in-
troduce the characteristics of human vision. Previous works
have given discussions about this topic. VRCodes [7] has a
deep discussion of human visual system and camera imaging.
HiLight [4] discusses the principles of inter-frame embedment
in VLC-based screen-camera communication. We summarize
the important parts which will be used to design UnseenCode.

A. Flicker Perception of Human Vision

Human eyes perceive temporal change of light intensity, i.e.
flicker, in a low-pass manner. When light intensity fluctuates
quickly enough, human eyes only perceive the average inten-
sity instead of flicker. This phenomenon is called flicker fusion
effect. The lowest frequency that causes flicker fusion is called
critical flicker frequency (CCF). CCF is not a constant value
and it varies with many factors. We point out some important
characteristics of flicker fusion as follows:
• CCF depends on the amplitude of flicker. With weaker

flicker, CCF is also lower.
• Human vision is more sensitive to luminance change than

chromatic (color) change. The chromatic CCF is about
25Hz, only half of the luminance CCF [10].

• CCF is generally considered to be less than 60Hz under
most circumstances [11]. Screen devices are designed to
refresh at more than 60Hz frequency to avoid visible
flicker [12].

Although human cannot perceive high-frequency flicker, it
is possible to record such flicker with camera devices. The
difference between human vision and camera exposure enables
VLC-based screen-camera communication methods to achieve
unobtrusive transmission with inter-frame embedment.

B. Color Fusion Rule

Flicker fusion can be quantitatively described in CIE XYZ
color space by the color fusion rule. CIE XYZ color space
represents every perceived color with three tristimulus values
(X,Y, Z). Specifically, Y component measures the luminance
of a color. The color fusion rule is a direct conclusion from the
Grassmann’s law of color matching [13]. It states that if two
colors L1 = (X1, Y1, Z1) and L2 = (X2, Y2, Z2) alternate at
a constant frequency (higher than CCF) on the screen, human
vision perceives the fused color as:

L =
L1 + L2

2
= (

X1 +X2

2
,
Y1 + Y2

2
,
Z1 + Z2

2
) (1)

We call color L1 and L2 as a fusion pair of L, which can be
seen as a decomposition of L in CIE XYZ color space (Fig. 2).
Specially, if we keep luminance component Y invariant, i.e.



TABLE II: Comparison of UnseenCode and existing screen-camera communication methods

Method Features
Embedment Extraction High Capacity Unobtrusive Reliability

Barcode methods
(QRCode, PiCode [2]...) intra-frame image-based

√

VLC-based methods
(VRCodes [7], HiLight [4], TextureCode [6]...) inter-frame video-based

√ √

Proposed method
(UnseenCode) inter-frame image-based

√ √

Y1 = Y2, then L1 and L2 form a luminance-invariant fusion
pair of L, which can be seen as a decomposition of L in the
XZ plane.

Fig. 2: Example of color fusion in CIE XYZ color space. L1

and L2 form a fusion pair of L. The red, blue, and green lines
correspond to sRGB primary colors.

III. PROPOSED METHOD

In this section, we propose the core techniques used in
UnseenCode. First, we review inter-frame embedment method
from VLC-based screen-camera communication, based on
which we propose to embed invisible barcodes into on-
screen contents by constructing luminance-invariant fusion
pairs. Then we analyze the process of camera exposure and
discover the possibility to use image-based extraction with
UnseenCode. We propose an extraction method to recover the
barcode from single captured image based on cross-component
correlation of color images.

A. Inter-frame Embedment of Barcodes
VLC-based screen-camera communication leverages color

fusion rule to construct fusion pairs and uses the inter-frame
difference between a fusion pair to encode data. Here is a
simple illustration. Let Io(i, j) be original on-screen content
(a two-dimensional image), where (i, j) denotes pixel coor-
dinate, and I denotes specific component of an image (like
Y component in CIE XYZ color space). We can construct a
sequence of frames as:

I2k−1(i, j) = Io(i, j)− 1

2
∆Ik(i, j)

I2k(i, j) = Io(i, j) +
1

2
∆Ik(i, j)

(2)

I2k−1 and I2k form a fusion pair of Io. The fusion pairs are
then displayed on the screen at high framerate. Due to flicker
fusion, human observers perceive fused image Io. Inter-frame
difference is given by:

∆Ik(i, j) = I2k(i, j)− I2k−1(i, j) (3)

We can use ∆Ik(i, j) to encode data. For example, Tex-
tureCode uses temporal Manchester coding and embed coded
data in luminance component (so I is Y component of CIE
XYZ color space). It takes ∆Ik(i, j) = αs(k), where α is
a constant scale factor to determine inter-frame luminance
difference, and s(k) = +1 or −1 represents bit 0 or 1,
respectively. HiLight uses frequency modulation in Y compo-
nent. HiLight and TextureCode require at least 120Hz display
framerate to maintain invisibility. Uber-in-Light and VRCodes
use frequency modulation in R and B chromatic components
of RGB color space and limit the amplitude of inter-frame
difference, which can maintain invisibility with common 60Hz
framerate.

These VLC-based methods effectively make use of temporal
dimension k of ∆Ik(i, j) to transmit time-series data. Remem-
ber that each ∆Ik(i, j) is a two-dimensional image. We can
use its distribution of pixel values over spatial dimensions i, j
to represent data as well. By this way, UnseenCode embeds
invisible barcode into on-screen contents. We illustrate our
embedment method as:

I2k−1(i, j) = I1(i, j) = Io(i, j)− 1

2
∆I(i, j)

I2k(i, j) = I2(i, j) = Io(i, j) +
1

2
∆I(i, j)

∆I(i, j) = α(i, j)Sm(i, j)

(4)

where Sm(i, j) ∈ {1,−1} is a barcode image which
encodes message m, and α(i, j) is a scale factor to determine
the amplitude of inter-frame difference of each pixel. The
implementation details of barcode design and scale factor will
be given in Section IV.

UnseenCode leverages chromatic flicker to improve vi-
sual experience as well. Specifically, UnseenCode constructs
luminance-invariant fusion pair by embedding barcodes in X
component of CIE XYZ color space. As in Uber-in-Light and
VRCodes, UnseenCode is able to maintain invisibility at 60Hz
to 75Hz display framerate, which is commonly supported by
off-the-shelf screen devices.



B. Image-based Extraction
Now let’s focus on the extractor side. Seemingly, we need to

capture adjacent frames I2k−1 and I2k to recover inter-frame
difference ∆I . Because there is no timing synchronization
mechanism between camera exposure and display, the camera
has to sample on-screen content at twice the display framerate.
This is essentially a video-based extraction process. However,
video-based extraction imposes high hardware requirements
for camera devices and lacks reliability. We analyze the
exposure process of camera and find that the inter-frame
difference is implicit in the captured image if the exposure
time meets certain condition. And we propose a background
removal method to recover barcode image based on cross-
component correlation of color images.

1) Analysis of Camera Exposure: In contrast to human
vision, a digital camera captures images via sampling. In a
camera, each pixel sensor is exposed for a short time (exposure
time) and records the light intensity integrated over time.
Typical exposure time settings of smartphone cameras are
1/30s, 1/60s, 1/125s, etc. in image capture mode and 1/30s,
1/60s in video recording mode.

An intuitive idea is that we can capture each of the in-
dividual frames of a fusion pair with short exposure time to
extract barcode image. However, it requires that exposure time
is shorter than display frame interval and cannot span two
frames. With typical 60FPS to 144FPS framerate of screen
devices, it is still difficult to capture individual frames.

To discover the possibility of image-based extraction, we
do a simple analysis of the exposure process. Consider the
case of Equation (4), a fusion pair I1 and I2 are displayed
alternately on the screen. Then the fused image is Io = I1+I2

2 ,
and the inter-frame difference (which carries barcode image)
is ∆I = I2 − I1. Suppose that the exposure time of I1 and
I2 is given by t1 = 1

2 t0 −∆t and t2 = 1
2 t0 + ∆t, and ignore

camera processing and distortions. The captured image Icap
is:

Icap = t1I1 + t2I2

= t0Io + ∆t∆I
(5)

This is an ideal model. In practice, the camera normalized
the intensity histogram of the captured image. To simplify the
discussion, we apply Gaussian normalization to I and assume
that the term ∆t∆I has little impact on histogram compared to
t0Io. Then it is safe to leave out the factor t0 in the normalized
I ′cap. We simplify Equation (5) as:

I ′cap =
(Icap − µI)

σI
= I ′o + λ∆t∆I (6)

where λ is the scale factor due to normalization. We can
find that inter-frame difference ∆I is implicit in the captured
image if ∆t 6= 0. Obviously, ∆t = 0 happens when exposure
time spans exactly even number of frames (t1 = t2). Such
case rarely happens and can be prevented by custom exposure
setting. Now the problem is how to remove the term I ′o from
Equation (6), which we call as background image.

2) Background Removal based on Cross-component Cor-
relation: Until now, our discussion only refers to single
component of the image. In UnseenCode, X component of
a color image is used for embedment, but another chromatic
component Z is not used. We discover the possibility of back-
ground removal from cross-component correlation of color
images. For a color image, there is generally a high correlation
between different chromatic components. So we can assume
the normalized pixel values between two components are
almost the same, i.e. X ′o ≈ Z ′o. Cross-component correlation
has been effectively used for image restoration [14] [15].

For our case, Z component remains unchanged between
frames, so we can expect Z component Zo = Z1 = Z2 is
highly correlated with original X component Xo. We can use
Zcap ≈ Zo to estimate Xo. As before we apply histogram
normalization to each component and get X ′cap and Z ′cap.
Finally, we extract the inter-frame difference as:

∆X ′ = λ∆t∆X = X ′cap − Z ′cap (7)

Note that above-mentioned derivations do not take noise,
distortions and camera processing into account. The real pixel
values are affected by these factors, and we cannot perfectly
recover ∆X . However, as long as the pattern of ∆X in the
captured image is strong enough, we can still decode the
barcode by template matching method. We will discuss the
implementation details in the next section.

IV. SYSTEM DESIGN

In the previous section, we have outlined the barcode
embedment and extraction techniques used in UnseenCode. In
this section, we will propose the design details of UnseenCode
embedment and extraction algorithm.

A. Embedment Algorithm

The embedment process of UnseenCode is summarized into
4 steps, as shown in Fig. 3. The input is on-screen content
represented as a color image, and the output is a luminance-
invariant fusion pair of the input carrying the barcode image.
As for dynamic content (video), each frame is processed
independently to generate output frames.

Spatial Partition: To take advantage of high spatial reso-
lution of smartphone cameras, the input image is divided into
blocks, and each block encodes one bit of data. UnseenCode
uses 45◦ tilted square barcode templates (explained later)
to cover the screen (Fig. 4 and 5). The number of blocks
determines data capacity. If we define N as the number of
complete blocks in the first row of output frames, then the
capacity is 2N(N −1)+1 bits, because incomplete blocks on
the image boundary are not used.

Color Separation: Then the input image is separated into
X, Y and Z components. Typically, on-screen contents use
sRGB color space to represent pixel values. We need to trans-
form pixel values to CIE XYZ color space. The transformation
is given by:



Fig. 3: Illustration of UnseenCode system design

XY
Z

 = T

RG
B

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

RG
B

 (8)

After this step, we get X , Y , Z components of each block
as three two-dimensional arrays.

(a) S0: bit 0 (b) S1: bit 1

Fig. 4: Barcode templates to represent one bit

Barcode Embedment: Then UnseenCode embeds either
barcode template S0(i, j) or S1(i, j) into each block to encode
bit 0 or 1. We illustrate S0 and S1 in Fig. 4, where black
and white pixels represent S(i, j) = −1 and +1, respectively.
We choose +45◦ and −45◦ line stripes for better detectability
on the extractor side, because the pixel array on the screen
devices usually introduces horizontal or vertical line stripes
into the captured images. Given the encoded bit in the current
block, UnseenCode embeds corresponding barcode template
into Xo(i, j):

X1(i, j) = Xo(i, j)− 1

2
∆X(i, j)

X2(i, j) = Xo(i, j) +
1

2
∆X(i, j)

∆X(i, j) =

{
α(i, j)S0(i, j), to encode bit 0
α(i, j)S1(i, j), to encode bit 1

(9)

As for scale factor α(i, j), we have two constraints on it.
First, to avoid noticeable flicker, we want to set a threshold
αmax to limit the inter-frame change. Second, we must ensure

that generated frames can be converted back to valid RGB
values, so that they can be displayed on the screen. With sRGB
conversion formula given in Equation (8), we can get:[

Rk Gk Bk

]ᵀ
= T−1 ×

[
Xk Yk Zk

]ᵀ
=

Ro ± 3.2409α(i, j)
Go ∓ 0.9689α(i, j)
Bo ± 0.0557α(i, j)

ᵀ

(10)

So α(i, j) is the maximum value such that:{
α(i, j) ≤ αmax

0 ≤ Rk, Gk, Bk ≤ 1, k = 1, 2
(11)

In this step, we generate the luminance-invariant fusion pair
(X1, Yo, Zo) and (X2, Yo, Zo) of the input image block and
embed barcode image into X component.

Display: After every block is processed, we get the
luminance-invariant fusion pair of the input image with bar-
code embedded. Fig. 5 is an example of the output fusion pair.
Output frames are inversely transformed back to RGB color
space and then displayed alternately on the screen at desired
framerate.

As for video, each frame is decomposed and displayed
sequentially. Frame duplicating is usually needed to make up
difference between video framerate and monitor refresh rate.
For example, a typical a 24FPS video is re-encoded to 48FPS
by UnseenCode, and every fusion pair is duplicated three times
to synchronize with 144Hz refresh rate.

B. Extraction Algorithm

On the UnseenCode extractor side, the extraction process
has 4 steps, as shown in Fig. 3. The input is the captured image
of on-screen content. As in embedment algorithm, spatial
partition and color separation are applied to the input image,
and Xcap and Zcap are extracted.

Barcode Extraction: As is stated in Section III, Unseen-
Code applies histogram normalization (Equation (6)) to Xcap

and Zcap, and gets X ′cap and Z ′cap respectively. The barcode
image of each block is extracted by subtracting correlated Z
component from X component:



(a) Original image (b) First frame of the
fusion pair

(c) Second frame of
the fusion pair

Fig. 5: Example of generated fusion pair. Here N = 12 and
265 bits are embedded into the image of Lenna.

∆X ′(i, j) = X ′cap(i, j)− Z ′cap(i, j) (12)

In general, pixel values of ∆X ′(i, j) is not equal to original
∆X(i, j). The capture process scales the intensity of pixel
values and introduces various distortions.

Template Matching: To determine whether S0 or S1 is
embedded in ∆X , a simple template matching is applied to
∆X ′. UnseenCode checks the correlation between extracted
inter-frame difference and two barcode templates. The tem-
plate with higher correlation is treated as embedded one:

Corr(I1, I2) =

∣∣∣∣∣∣
∑
i,j

I1(i, j)I2(i, j)

∣∣∣∣∣∣
m =

{
0, Corr(∆X ′, S0) < Corr(∆X ′, S1)

1, otherwise

(13)

After each block is processed, we get the embedded bits.
Due to the noise introduced by camera capture, there are
always error bits. We will evaluate the error rate in Section V.

(Optional) Multiple-image Extraction: This is an extra
step to improve decoding accuracy. As in QRCode, Unseen-
Code can leverage temporal redundancy of barcode embed-
ment as well. We use a simple per-bit voting mechanism.
For multiple input images, the extractor decodes every image,
compares every decoded bit, and take the most common
decoding result for each bit as the final result.

V. EVALUATION

In this section, we evaluate the performance of UnseenCode
prototype. Our evaluation focus on visual experience, applica-
bility with different hardware settings and decoding reliability.
First, we briefly introduce the implementation of UnseenCode
prototype. Next, we introduce our default experimental settings
and evaluation metrics. Then we show detailed experimental
results to prove the performance of UnseenCode and give
discussions on the experimental results.

A. Prototype Implementation

The prototype of UnseenCode system consists of an embed-
der, a player and an extractor written in Python and C++ with

OpenCV and SDL libraries. The embedder takes a message
and images (either a static image or video frames) as input
and outputs a sequence of frames with barcode embedded.
The player then displays the embedded contents at specified
framerate. The extractor parses the captured image, extracts
the barcode image and decodes the embedded data. Currently,
the decoder runs on computer and parses images captured
by smartphone offline. The built-in camera application on
smartphones is used to capture images.

B. Experimental Setup & Metrics

The default experiment settings are as follows. We display
UnseenCode with AOC G2770PF 27’ screen, which supports
a wide range of refresh rate from 60Hz to 144Hz. The camera
used to capture UnseenCode is Nokia 7 smartphone, which is
an entry-level smartphone and supports up to 1/1000s exposure
time. All experiments were conducted in a well-lit room.

(a) Document (b) Lenna (c) Movie (dynamic)

Fig. 6: Test inputs in the performance evaluation.

We test three types of on-screen contents in all the exper-
iments, including two static contents and one dynamic video
content:
• Document, which contains only grayscale background

and texts. (Fig. 6a)
• Image of Lenna, which serves as an example of texture

color images. (Fig. 6b)
• Video with movements. We take the video clip from the

movie Big Buck Bunny. (Fig. 6c)
For the objective performance evaluation, we take 7 images

for each test case to perform multiple-image extraction to
improve decoding accuracy. We keep the proportion of screen
content at 30% area of captured image to simulate barcode
scanning scenario. Capacity is set to 481 bits (N = 16).
Decoded bits are compared with original encoded bits to
calculate bit error rate (BER) of each test case. BER is the
main metric of performance evaluation.

C. Subjective Evaluation

Invisibility is the fundamental design goal of UnseenCode,
so we first evaluate the perceptual quality of embedded con-
tents. For better decodability, we want to maximize the inter-
frame change threshold αmax. But larger αmax also increase
the possibility of visible flicker. We want to find the maximum
αmax values at each display framerate without causing visible
flicker. We conduct this part of tests by subjective evaluation.
We also discuss other visible distortions caused by Unseen-
Code.



We ask 5 testers to give feedback on perceptual quality
of UnseenCode embedded contents under different settings
of display framerate. The original content and the embedded
content is displayed side by side. Testers should report whether
they can observe flicker, and if not, whether there are other
differences between original and embedded contents.

The maximum flicker-free αmax values at each framerate are
shown in Tab. III. Below this maximum αmax, testers cannot
notice flicker regardless of contents. As is expected, for lower
framerate, αmax has to be set smaller to prevent visible flicker.
For further objective performance test, we will set αmax to
these maximum flicker-free level.

TABLE III: Maximum αmax without causing flicker

Frame Rate 60FPS 75FPS 100FPS 120FPS 144FPS
αmax 0.10 0.15 0.40 no limit no limit

In the absence of flicker effect, there are still other visible
differences between original and embedded contents. We will
discuss them below.

(a) Original image (b) Embedded image

Fig. 7: Illustration of perceptual quality by capture screen
content (120FPS) with relatively long exposure time (1/15s).
Two images are captured under the same camera settings. One
can notice color distortion on the hat of Lenna.

The first is color distortion. This is due to the inaccurate
color space transformation used in UnseenCode. The real RGB
to CIE XYZ transformation is device-dependent and usually
non-linear due to possible gamma correction to pixel values.
In the current implementation of UnseenCode, we do not take
gamma correction into consideration, and the generated fusion
pairs do not correctly reproduce desired colors. To illustrate
the distortion, we capture both original and embedded contents
with relatively long exposure time to simulate the perception
of human, as is shown in Fig. 7. The distortion is not very
severe, and testers even cannot tell which one is distorted.

The second one, which we call it uncertain visual distur-
bance, is still not fully understood by us. When displaying
embedded contents at very high framerate (144 FPS), testers
sometimes still report visual disturbance, even if they cannot
distinguish between original and embedded contents. We sus-
pect that this is caused by saccades of human eyes. Saccades
are random quick movements of eyes to maintain high sensitiv-
ity of human vision. It is reported human can perceive 500Hz
flicker during saccades under specific circumstances [16]. It

is possible that above-mentioned uncertain visual disturbance
is noticeable flicker during saccades. We believe that all the
VLC-based screen-camera communication methods suffer this
problem. Detailed analysis is beyond the scope of this article.

D. Objective Evaluation

We evaluate decoding performance of UnseenCode. Our
main concerns are:

• Applicability: To test whether UnseenCode works with a
wide range of screen and camera setups.

• Capacity: To test how many bits UnseenCode can embed
with an appropriate error rate.

• Reliability: To test how several practical factors impact
on UnseenCode decoding accuracy.

TABLE IV: UnseenCode bit error rate evaluation under dif-
ferent settings of on-screen contents, display framerate and
camera exposure time

Display
Framerate

Camera
Exposure Time

Bit Error Rate
Document Lenna Video

75 FPS
(α = 0.15)

1/30s 4.56% 17.58% 13.56%
1/60s 0.10% 2.67% 3.75%

1/125s 0.04% 0.92% 1.50%
1/250s 0.00% 0.54% 1.60%

100 FPS
(α = 0.40)

1/30s 0.10% 3.88% 6.54%
1/60s 0.00% 1.90% 4.44%

1/125s 0.00% 0.42% 1.00%
1/250s 0.00% 0.38% 0.98%

144 FPS
(α = ∞)

1/30s 0.88% 6.85% 10.17%
1/60s 0.06% 4.48% 7.69%

1/125s 0.00% 2.27% 1.00%
1/250s 0.02% 2.77% 1.58%

1) Evaluation of Applicability: In this evaluation, we fix
the relative positions of smartphone camera and screen with
tripod. We change the framerate of on-screen contents and
camera exposure time to see how screen and camera setups
impact on decoding accuracy. On the camera side, we test
commonly-used standard exposure time 1/30s, 1/60s, 1/125s
and 1/250s. These exposure time settings are supported by
most smartphone cameras. To avoid the case that exposure
time is an even multiple of frame interval, we only test 75
FPS, 100 FPS and 144 FPS framerate on the screen side. αmax

values in Tab. III are used to limit inter-frame pixel change.
The result is given in Tab. IV. In most settings, BER is less

than 5%, and we can expect good decoding performance with
appropriate error correcting code. High BER can happen in
the following conditions:

• The screen content is complex and/or dynamic. For Lenna
image, the BER is higher than smooth and monochro-
matic document scene. And for dynamic video scene, the
BER is even higher.

• The exposure time is too long relative to frame interval,
like 144 FPS & 1/30s setting. In this case, the difference
in exposure time between each frame of a fusion pair is
not significant, and the barcode image is submerged in
noise.



• The αmax value is small, like 75 FPS screen setting. In
this case, the amplitude of inter-frame difference is too
weak to be captured.

On the camera side, shorter exposure time is preferred.
Android system provides APIs for exposure control, and most
of recent smartphones support up to 1/1000s exposure time.
Older smartphone may not support custom exposure control.
In this case, auto exposure should work as well. On the screen
side, 100 FPS setting provides better decodability. For low-end
screens, 75 FPS setting still maintains a reasonable BER.

2) Evaluation of Capacity: In this evaluation, we use 100
FPS & 1/60s screen-camera setting. To check the appropriate
capacity range of UnseenCode, we change block partitioning
parameter N and see how it impacts on BER. The result is
given in Tab. V. The capacity can reach at least 1.5 kbit with
BER less than 5%. For document content, the capacity can
reach at least 2.5 kbit, which is roughly equivalent to QRCode
version 8 to 9.

TABLE V: UnseenCode bit error rate evaluation under differ-
ent settings of on-screen contents and capacity

N Capacity
/bits

Bit Error Rate
Document Lenna Video

12 265 0.00 % 0.38 % 3.62 %
16 481 0.01 % 1.94 % 4.73 %
20 761 0.02 % 3.81 % 3.15 %
24 1105 0.21 % 3.86 % 2.96 %
28 1513 0.53 % 4.38 % 5.79 %
32 1985 1.38 % 5.88 % 7.98 %
36 2521 3.52 % 8.53 % 10.02 %

3) Evaluation of Reliability: Lastly, we evaluate several
practical factors that may or may not impact on decoding
performance. Because we focus on practical usage and hope
to draw qualitative conclusions about reliability, all the ex-
perimental images are captured with handheld smartphones
without tripod.

a) Distance: The impact of the distance from camera to
screen is examined. As before, we use the area ratio of on-
screen contents to measure the distance indirectly. The result
is shown in Fig. 8a. As is expected, the BER increases as
the distance increases, because the number of valid pixels
decreases. As for our test phone (Nokia 7), the BER remains
low until the area ratio drops to about 20 to 25%. A possible
solution is to use cameras with higher spatial resolution.

b) Angle: The impact of (horizontal) camera view angle
is examined, as is shown in Fig. 8b. The BER only fluctuates
by about 1%, so we conclude that view angle does not impact
on decoding performance significantly.

c) Shake: As for video-based extraction in VLC-based
screen-camera communication, video shake impacts on de-
coding performance significantly. As we cannot measure the
degree of shaking accurately, we only give a qualitative
discussion. Since all the images in our reliability evaluation
are captured by handheld smartphones, we can compare the
results to previous evaluations. We find that there is no
significant performance degradation. In UnseenCode, image-
based extraction requires relatively short exposure time. Hand

shake can be ignored in such a short time, as long as the
captured image is clear and not blurred.

d) Phone Model: Lastly, we compare the performance
on other smartphones as well. Camera capabilities have been
given in Fig. I. The result is shown in Fig. 8c. There are
apparent performance differences between different models.
Xiaomi Mi 3, which was released in 2013, performs worse.
Nokia 7, which was released in 2017, performs best. We can
expect that new smartphone cameras generally perform better
than old ones.

VI. RELATED WORKS

A. Barcodes

Barcodes use machine-readable image patterns to encode
data. UPC and QRCode [1] are most popular barcode tech-
niques. Barcodes can be printed on paper or displayed on
screen (screen-camera communication) and read out by bar-
code scanners. Previously, many works focus on high-capacity
barcode design. However, the capacity of QRCode is thought
to be enough in most practical scenario. Some recent works
focus on visual experience of barcodes [2] [3]. In these
beautified barcode design, barcodes are embedded into images
without losing the human readability of original contents.
UnseenCode focuses on visual experience as well. However,
different from beautified barcodes, UnseenCode focuses on
the scenario of screen-camera communication, i.e. barcodes on
the screen. So we can borrow ideas from VLC-based screen-
camera communication to construct invisible barcodes on the
screen.

B. VLC-based Screen-camera Communication

Visible light communication (VLC) is a very mature field
of research. Screen-camera communication leverages visible
light channel as well. Naturally, techniques of VLC can
be used in this emerging field. Most works of VLC-based
screen-camera communication emphasize obtrusiveness and
capacity. VRCodes [7] and HiLight [4] are early works of
this field, which use inter-frame chromatic and luminance
change, respectively, to modulate data. We refer to such data
embedment scheme as inter-frame embedment. TextureCode
[6] optimizes the selection of embedding area to effectively
reduce obtrusiveness. Uber-in-Light [8] leverages chromatic
flicker to modulate data and proposes an enhanced MUSIC-
based demodulation method to enhance transmission accuracy.
VLC-based screen-camera communication requires different
data extraction scheme (video-based extraction) to barcodes
(image-based extraction). In this paper, UnseenCode uses
inter-frame embedment to construct invisible barcodes. How-
ever, UnseenCode does not require video-based extraction.
By using image-based extraction as in barcodes, UnseenCode
achieves both high applicability and reliability with off-the-
shelf screen and camera devices.

C. Image Watermarking

Image watermarking aims to covertly embed copyright data
into images or video. The embedment scheme should be



10 20 30 40 50

2

4

6

8

10

12

14

16

Area ratio of on-screen contents (%)

B
it

E
rr

or
R

at
e

(%
)

Document Lenna Movie

(a) Area ratio of on-screen contents
(Camera distance)

0 15 30 45
0

1

2

3

4

5

Camera view angle (degree)

B
it

E
rr

or
R

at
e

(%
)

Document Lenna Movie

(b) Camera view angle

0 1 2 3 4 5 6 7

Document

Lenna

Movie

0.02

2.83

4.58

0.04

4.17

6.46

0.02

2.71

5.84

Bit Error Rate (%)

Nokia 7 Xiaomi Mi 3 vivo X3L

(c) Phone model

Fig. 8: Impact of other practical factors on decoding performance

robust enough, so the embedded data can survive from various
image processing, such as resizing, compression and even
camera re-capture. Anti-capture watermarking is a relatively
popular field in watermarking. Most of existing works embed
data in specific transform domains in which some coefficients
are kept invariant after re-capture. For example, [17] embeds
watermarking data into log-polar transform domain. Digimarc
[18] is a commercial application of anti-capture watermarking.
In this paper, UnseenCode can survive from camera re-capture.
It may serve as a method of anti-capture watermarking.

VII. CONCLUSION

This paper proposes UnseenCode, a novel invisible on-
screen barcode scheme, which supports image-based extrac-
tion like traditional barcodes with off-the-shelf smartphones.
Our design leverages inter-frame embedment method, which
originates from VLC-based screen-camera communication, to
embed barcodes invisibly into chromatic component of the on-
screen contents. We examine the exposure process of camera
and propose to use cross-component correlation to recover
UnseenCode barcode from single captured image (image-
based extraction). We present UnseenCode implementation
and evaluate both visual experience and decoding performance
with off-the-shelf screen and camera devices. These evalua-
tions confirm the applicability and reliability of UnseenCode
prototype.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science
Foundation of China under Grant U1636201 and 61572452.

REFERENCES

[1] International Organization for Standardization, Information technology
– Automatic identification and data capture techniques – Bar code
symbology – QR Code, ISO Std., 2000.

[2] C. Chen, W. Huang, B. Zhou, C. Liu, and W. H. Mow, “Picode: A new
picture-embedding 2d barcode,” IEEE Trans. Image Process., vol. 25,
no. 8, pp. 3444–3458, 2016.

[3] Y.-H. Lin, Y.-P. Chang, and J.-L. Wu, “Appearance-based qr code
beautifier,” IEEE Trans. Multimedia, vol. 15, no. 8, pp. 2198–2207,
2013.

[4] T. Li, C. An, X. Xiao, A. T. Campbell, and X. Zhou, “Real-time screen-
camera communication behind any scene,” in Proc. of the 13th Annual
Int. Conf. on Mobile Systems, Applications, and Services (MobiSys).
ACM, 2015, pp. 197–211.

[5] A. Wang, Z. Li, C. Peng, G. Shen, G. Fang, and B. Zeng, “Inframe++:
Achieve simultaneous screen-human viewing and hidden screen-camera
communication,” in Proc. of 13th the Annual Int. Conf. on Mobile
Systems, Applications, and Services (MobiSys). ACM, 2015, pp. 181–
195.

[6] V. Nguyen, Y. Tang, A. Ashok, M. Gruteser, K. Dana, W. Hu, E. Wen-
growski, and N. Mandayam, “High-rate flicker-free screen-camera com-
munication with spatially adaptive embedding,” in Proc. IEEE Int. Conf.
on Computer Communications (INFOCOM). IEEE, 2016.

[7] G. Woo, A. Lippman, and R. Raskar, “Vrcodes: Unobtrusive and active
visual codes for interaction by exploiting rolling shutter,” in Proc. IEEE
Int. Symposium on Mixed and Augmented Reality (ISMAR). IEEE,
2012, pp. 59–64.

[8] M. Izz, Z. Li, H. Liu, Y. Chen, and F. Li, “Uber-in-light: Unobtrusive
visible light communication leveraging complementary color channel,”
in Proc. IEEE Int. Conf. on Computer Communications (INFOCOM).
IEEE, 2016.

[9] E. Wengrowski, K. J. Dana, M. Gruteser, and N. Mandayam, “Reading
between the pixels: Photographic steganography for camera display
messaging,” in Proc. IEEE Int. Conf. on Computational Photography
(ICCP). IEEE, 2017.

[10] Y. Jiang, K. Zhou, and S. He, “Human visual cortex responds to invisible
chromatic flicker,” Nature Neuroscience, vol. 10, no. 5, p. 657, 2007.

[11] A. Eisen-Enosh, N. Farah, Z. Burgansky-Eliash, U. Polat, and Y. Mandel,
“Evaluation of critical flicker-fusion frequency measurement methods
for the investigation of visual temporal resolution,” Scientific Reports,
vol. 7, no. 1, p. 15621, 2017.

[12] M. Menozzi, F. Lang, U. Naepflin, C. Zeller, and H. Krueger, “CRT
versus LCD: Effects of refresh rate, display technology and background
luminance in visual performance,” Displays, vol. 22, no. 3, pp. 79–85,
2001.

[13] E. Reinhard, E. A. Khan, A. O. Akyuz, and G. Johnson, Color imaging:
fundamentals and applications. AK Peters/CRC Press, 2008.

[14] J. Park, Y.-W. Tai, and I. S. Kweon, “Identigram/watermark removal
using cross-channel correlation,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2012, pp. 446–453.

[15] N. P. Galatsanos, A. K. Katsaggelos, R. T. Chin, and A. D. Hillery,
“Least squares restoration of multichannel images,” IEEE Signal Pro-
cess. Mag., vol. 39, no. 10, pp. 2222–2236, 1991.

[16] J. Davis, Y.-H. Hsieh, and H.-C. Lee, “Humans perceive flicker artifacts
at 500 hz,” Scientific Reports, vol. 5, p. 7861, 2015.

[17] L. A. Delgado-Guillen, J. J. Garcia-Hernandez, and C. Torres-Huitzil,
“Digital watermarking of color images utilizing mobile platforms,” in
Proc. IEEE Int. Midwest Symposium on Circuits and Systems (MWS-
CAS). IEEE, 2013, pp. 1363–1366.

[18] (2018) Digimarc: The Barcode of Everything. [Online]. Available:
https://www.digimarc.com/


